Credit: CC0 Public Domain Importantly, Flinders University’s Professor of Aquaculture Jian Qin—who led the study with Flinders colleague Professor Youhong Tang—says this simple device could become commercially viable and enable a "real-time" monitoring of spoilage in seafood to ensure food safety for consumers. The first author of this publication was Professor Yonghua Jiang, a visiting scholar from Jimei University, China. She estimates that this device can be a major cost saver for the seafood industry and retailers, as spoilage accounts for at least 10% of all seafood production. The core of the new spoilage analysis technology is understanding that biogenic amines play an important physiological function of living cells, but a high level of biogenic amines in seafood has an adverse impact on human health and can cause food poisoning . Therefore, biogenic amines have become important indicators for the evaluation of food freshness and edibility—and reading these amines can be done by a simple and cost-effective method using the filter papers loaded with an AIEgen, such as dihydroquinoxaline derivative (H + DQ2), to monitor salmon spoilage. The research found that as spoilage in the salmon samples increased, triggering more amine vapours, so too did the intensity of the […]

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.