Using kinetic energy, it’s got the potential to be more efficient than solar panels. Rust is often associated with decay and disrepair, but scientists at Caltech and Northwestern University are looking at rust differently: as a means of generating electricity. Rust, after all, is nothing more than iron oxide. Thin films of it, as the scientists show in a new study, could be used to generate electricity when interacting with salt water. Combining metal compounds and salt water is a well-known way of conducting electricity, since chlorine and sodium ions can carry electrical currents. The process can even be replicated in your kitchen. But the process at hand, developed by Caltech professor of chemistry Tom Miller and Dow Professor of Chemistry at Northwestern Franz Geiger, doesn’t feature any chemical reactions. Instead, the team focused on Newton’s 3rd Law—for every action, there is an equal and opposite reaction—by converting the kinetic energy of moving salt water into electricity. This process is more commonly known as the electrokinetic effect and has been seen before in thin films of graphene, tightly bound in a carbon atom’s honeycomb lattice. At its best, the electrokinetic effect can generate electricity with around 30 percent efficiency—that’s […]


Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.